LOW-VOLTAGE 10-BIT
IDT74CBTLV3862

BUS SWITCH WITH ACTIVE

 HIGH AND LOW ENABLESFEATURES:

- $5 \Omega \mathrm{~A} / \mathrm{B}$ bi-directional switch
- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100 mA
- $\mathrm{VcC}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in SSOP, QSOP, and TSSOP packages

APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation

DESCRIPTION:

The CBTLV3862 provides ten bits of high-speed bus switching with low on-state resistance of the switch allowing connections to be made with minimal propagation delay.

The device is organized as one 10 -bit bus switch. The switches are controlled by independent active-low enable ($\overline{\mathrm{OE}})$ and active-high enable (OE) controls.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver, and OE should be tied to GND.

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIEDSCHEMATIC,EACH SWITCH

PIN CONFIGURATION
$\mathrm{OE} \square 1$

SSOP/ QSOP/ TSSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	V
VI	Input Voltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, VI/0 <0	-50	mA
TSTG	Storage TemperatureRange	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE ${ }^{(1)}$

Inputs		Function	
OE	$\overline{\mathrm{O}} \overline{\mathrm{E}}$		
L	L	Disconnect	
L	H	Disconnect	
H	L	A Port = B Port	
H	H	Disconnect	

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

OPERATING CHARACTERISTICS ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7 V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	2	-	
VIL	Low-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7 V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	OperatingFree-AirTemperature		-40	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Operating Condition: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIK	Control Inputs, Datal/O	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{ll}=-18 \mathrm{~mA}$		-	-	-1.2	V
11	Control Inputs, Datal/O	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	± 1	$\mu \mathrm{A}$
Ioz	Data I/O	$\mathrm{VcC}=3.6 \mathrm{~V}$, Vo $=0 \mathrm{~V}$ or 3.6 V switch disabled		-	-	5	$\mu \mathrm{A}$
Ioff		$\mathrm{VcC}=0 \mathrm{~V}$, Vı or $\mathrm{Vo}=0 \mathrm{~V}$ or 3.6 V		-	-	50	$\mu \mathrm{A}$
IcC		$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{lO}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}{ }^{(2)}$	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}$, one input at 3V, other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$
Cl	Control Inputs	$\mathrm{VI}=3 \mathrm{~V}$ or 0		-	4	-	pF
CIO(OFF)		$\mathrm{Vo}=3 \mathrm{~V}$ or 0 (switch off)		-	6	-	pF
RoN ${ }^{(3)}$	$\mathrm{Vcc}=2.3 \mathrm{~V}$	V I $=0$	$10=64 \mathrm{~mA}$	-	5	8	Ω
	Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$		$10=24 \mathrm{~mA}$	-	5	8	
		$\mathrm{VI}=1.7 \mathrm{~V}$	$10=15 \mathrm{~mA}$	-	27	40	
	$\mathrm{Vcc}=3 \mathrm{~V}$	V I $=0$	$10=64 \mathrm{~mA}$	-	5	7	
			$10=24 \mathrm{~mA}$	-	5	7	
		$\mathrm{VI}=2.4 \mathrm{~V}$	$\mathrm{l}=15 \mathrm{~mA}$	-	10	15	

NOTES:

1. Typical Values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	
tpD ${ }^{(1)}$	PropagationDelay A to B or B to A	-	0.15	-	0.25	ns
ten	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B	1	4.5	1	4.2	ns
tols	OutputDisable Time $\overline{\mathrm{O}}$ to A or B	1	5	1	5	ns
ten	OutputEnable Time OE to A or B	1	4.5	1	4.2	ns
tols	OutputDisable Time OE to A or B	1	5	1	6	ns

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impededance).

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)} \mathbf{3} \mathbf{3 . 3 \mathrm { V } \pm 0 . 3 \mathrm { V }}$	$\mathrm{Vcc}^{(2)}=\mathbf{2 . 5 V} \pm 0.2 \mathrm{~V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
$\mathrm{V} T$	1.5	$\mathrm{Vcc} / 2$	V
VLz	300	150	mV
VHz	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs
DEFINITIONS:
$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tr} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPLZAPL	VLOAD
tPHZIPZH	GND
tPD	Open

Propagation Delay

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERINGINFORMATION

